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Abstract

Geometric features of surfaces such as ridges and valleys are being used for
many applications in image processing, like object recognition, segmentation
and shape matching [YBS05, ZGM09, SF04]. In this work, we investigated
the computation and use of curvature features in model based segmentation
[WPK+] where a model, represented by a triangulated mesh, is adapted to
an image containing the object of interest.

In particular, in liver CT images model based segmentation showed poor
results at sharp regions of the object. Since curvature can be used to dif-
ferentiate those regions, its potential to improve segmentation was explored.
Therefore, methods to robustly calculate curvature features both in meshes
and images were explored. Reliability of several methods was investigated
and their suitability to establish correspondence of curvature in meshes and
images studied.

Curvature principal directions were proven to constitute a promising fea-
ture due to robustness and invariance of their computation.
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Chapter 1

Introduction

This document reports the work carried out at Philips Research (Hamburg,
Germany) for my Master Thesis. I studied the Master SISEA in Image
Processing at Télécom Bretagne (Brest, France) during the school year 2008-
2009. This is a work on Medical Image Processing.

1.1 Philips Research

Royal Philips Electronics Inc., most commonly known as Philips is a Dutch
electronics company. Philips is one of the largest electronics companies in the
world. In 2007, its sales were ¿26.79 billion. The company employs 123,800
people in more than 60 countries.

Philips is organized in a number of sectors:

� Philips Consumer Lifestyle (formerly Philips Consumer Electronics and
Philips Domestic Appliances and Personal Care)

� Philips Lighting

� Philips Healthcare (formerly Philips Medical Systems).

In parallel to these three bussines lines, there is Philips Corporate Tech-
nologies (PCT), which groups several organizations with a long history in
contributing to the innovation in Philips and the development of new mar-
kets. Building on the resulting competencies, Corporate Technologies today
creates and licenses options and Intellectual Property (IP), provides Research
& Development (R&D) services and incubates new businesses.
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Philips Research, the international research organization of Royal Philips,
and an organization of PTC, is acting on a global basis with laboratories
spread over Europe, North America and East Asia. Philips Research focuses
on the areas of health and well-being.

The Healthcare program of Philips Research is structured into 5 focal
areas:

� Medical Imaging Systems (MIS)

� Molecular Medicine (MOM)

� Monitoring and Treatment (MOT)

� Clinical Care Solutions (CCS)

� Emerging Markets Healthcare (EM-H)

Hamburg laboratory is divided into two teams:

� Tomographic Imaging Systems. This team is dedicated to research in
hardware systems for Magnetic Resonance Imaging (MRI) and Com-
puted Tomography (CT).

� Digital Imaging. This team is dedicated to research in medical image
processing, and is the team that I was integrated in for my Masters
Thesis.

1.2 Motivation

The detection and accurate segmentation of a particular structure in 3D gray
scale images is of interest for many medical applications. In particular, the
use of 3D models has proven to be a powerful tool for automatic segmen-
tation. Generally, such methods adapt an initial 3D shape model to image
structures under the constraint of preserving the model topology. In this
document we describe a shape as an explicit triangulated surface. The adap-
tation of the shape is realized as an energy minimization process [WPK+].

The adaptation has been proven to be robust, fast and accurate [KHL+09].
However, we observed that the mesh adaptation demonstrated somehow
poorer performance in the vicinity of sharp ridges of the shape model. The
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objective of this work is to detect this regions and to study new features from
the image and from the model that can improve the segmentation at ridges.

Sharp regions may be characterized by curvature features. In this doc-
ument, we study curvature computation for ridge-like regions detection and
the usability of curvature features in the Model Based Segmentation context
(c.f. chapter 2).

1.3 Structure of the document

This document is structured in three parts. The first part corresponds to
the bibliographic study done in the fields of differential geometry applied to
triangular meshes and to images, active contours and Model Based Segmen-
tation and ridge-like region detection. This part contains two chapters:

� Chapter 2 introduces the concept of Model Based Segmentation.

� All the mathematical basis required for ridge like regions detection are
explained in chapter 3. In particular the same mathematical theory was
adapted to discrete world in two different ways: for triangle meshes, as
shown in section 3.1, and for 3D images in section 3.2.

The second part contains the study on how to merge results from meshes
and from images and how they might be used to improve Model Based Seg-
mentation, and constitutes the main contribution to the solution of the prob-
lem. This part corresponds to chapter 4.

The third part contains the conclusions of the study and an outlook on
how this work might be continued. It contains two chapters:

� Chapter 5 analyzes the results obtained in previous chapters and sum-
marize the main aspects of this work.

� Chapter 5.4 does an overview on the possibilities drawn from this study
and what the future work might be.

There are five appendices containing supporting material:

� Appendix A is dedicated to explain the basics on differential geometry
and curvature computation in real, continuous functions.
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� Appendix B contains the definition of a new metric which is used for
vector comparison.

� Appendix C contains technical details on how to obtain a local coordi-
nate system in images and meshes.

� Appendix D gives a brief description on the visualization software that
I have developed as a support for my research.

� Appendix E shows some experimental results that, for space reasons,
have not been included in chapter 4.
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Chapter 2

Model Based Segmentation

The aim of this chapter is to make a brief introduction to Model Based Seg-
mentation (MBS). For more detailed explanations, refer to the Bibliography.
The origins of active contours are referred in [KWT88]. For a detailed study
on active shape models, refer to [CHTH94]. Most recent works on MBS can
be found in [FRZ+05, EPH+08].

MBS is an automatic segmentation method that incorporates prior knowl-
edge in a model, encoding high-level information such as shape and appear-
ance. This information allows instances of the object to be robustly and
accurately segmented.

Principle The principle of MBS assumes that structures of interest have
repetitive form of geometry and appearance. Therefore, these characteristics
may be statistically described and stored into an initial shape model. The key
issue of MBS consists of adapting the initial model to image structures under
the constraint of preserving model topology. These constraints are translated
into an energy function which considers image and model information.

Energy function Model adaptation using shape constrained models is
governed by a global energy function which is dependent on the image itself
and on the model through two terms: an external energy and an internal en-
ergy term. The external energy tends to attract the model to image features
such as a gradient or a specific gray value intensity whereas the internal en-
ergy ensures a good maintenance of model shape. The iterative procedure of
model adaptation is performed by minimizing the sum of these regularization
terms. They are weighted by a coefficient α which steers model deformation.

13



The global energy term is defined by

E = Eext + αEint (2.1)

where Eext increases with the deviation of the model from the detected image
features and Eint increases with the model deformation with respect to its
initial shape.

Feature search The aim is to search for a target point x̃i per mesh vertex
that optimizes a feature function along a search profile cj defined by

cj = jδ~ni (2.2)

where j = −l . . . l, resulting in M = 2l + 1 points along the profile with a
sampling step δ. The search profile is centered in the vertex x̂i and aligned
with its normal ~ni. This is illustrated in figure 2.1(a).

The function that we want to minimize is in general some distance be-
tween the feature in the image and the feature stored in the model,

d(F ) = d(F (cj), F
model
i ) (2.3)

where F (cj) is a feature evaluated at the point cj of the search profile, and
Fmodel
i is the prior knowledge about that feature stored in the vertex i of the

model (figure figure 2.1(b)). The definition of the distance depends on the
feature.

(a) Feature search profile along the nor-
mal direction at the vertex x̂i, sampled
from sampling point −l to l with step
size δ.

(b) Feature function example along the
search profile.

Figure 2.1: Feature search profile along the normal direction in MBS
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An iterative procedure is used to perform feature search along the line
using sub-sample accuracy. In the first iteration the profile is centered in the
vertex, once the best point x̃i is found for this iteration, the search profile is
centered in x̃i, l is set to 1 and the sample size δ is divided by half, therefore
a new best point is found and the next iteration started until a minimum
size δmin.

Different formulations of feature evaluation functions F (x) can be defined.
For example gradient based feature function with a high response at object
boundaries. The most promising points x̃i, obtained from the feature search
procedure are used for the calculation of the external energy.

External energy The external energy controlling the influence of image
information on the adaptation process is given by

Eext =
∑

d(F (x̃i), F
model
i ) (2.4)

So far we have only considered the contribution attached to the image
information, the term that controls mesh deformation is the internal energy.

Internal energy The internal energy ensures that the adapted shape is
close to the model restricting to a suitable distribution of the vertices. This
is achieved by measuring the deviation of the adapted mesh vertices to those
constituting the model. Penalizing deviations of the model shape to the
reference shape, regularizes the image forces acting on it. Hence, only mesh
shapes consistent with defined constraints are possible and the attraction of
individual triangles to false image structures decreases and preserves shape
similarity of all mesh vertices to the model vertices

Eint =
∑

j,k∈edges(M)

‖(vj − vk)− T · (v̂j − v̂j)‖2 (2.5)

where (vj − vk) represents an edge of the adapted shape, and (v̂j − v̂j) is an
edge of the original model. T is the transformation (rotation, translation and
homogeneous scaling) that minimizes the error between the adapted shape
and the model. This way, the internal energy augments only if the adapted
shape is different to the original model.
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Chapter 3

Characterization of ridge-like
regions through curvature
analysis

In this Chapter we describe different methods that allow the characterization
and detection of ridge-like regions in images and triangulated meshes. A ridge
is a sharp region that extends along a line on the surface it lies on.

Notation In the document, we take the following conventions for notation:

� Scalars and points in the space are denoted by lower case letters (e.g
the curvature k, the point p)

� Vectors are designed by lower case letters with an arrow (e.g. the
gradient vector ~g).

� Vector components are designed with subscripts (e.g. ~n = (nx, ny, nz)).
Vector derivatives are also designed with subscripts, but they are not
scalars (e.g. ∂~g

∂x
= ~gx).

� Matrices are designed by capital letters (e.g. the Hessian matrix, H)

� Functions are designed with capital letters (e.g. intensity function
I(x, y), or just I where there is no possibility of misunderstanding).

� A normal vector will stand for a vector which is orthogonal to a surface.
A vector of unit length will be called a normalized vector.
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� Directions are designed with normalized vectors unless otherwise indi-
cated.

� When multiplying vectors, “×” designates the cross product, and “·”
designates the dot product.

Mathematical characterization of ridge lines Intuitively, ridge lines
are the curves on a surface along which the surface bends sharply [YBS05],
producing crests and valleys (figure 3.1).

(a) Crest. (b) Valley.

Figure 3.1: Crests and valley in a surface

Although literature does not seem to converge to an unique description of
a ridge [MvdEV96], the most common definition is the following : the sharp
variation of the surface normals are described via extrema of the surface prin-
cipal curvatures along their corresponding lines of curvature [LFM96]. For a
more detailed description of the curvatures of a surface and their calculation
in a continuous space, refer to Appendix A.

Using the definition from [MBF92], ridge lines are curves containing ridge
points. At these points, one of the principal curvatures is locally maximal
(in absolute value) along the maximal curvature direction. Ridge points
may be detected from a simple thresholding to more complex methods like
detection of zero-crossings of the “extremality” (i.e. the derivative of the
curvature)[MBF92] , or analysis of first and second order derivatives of the
curvature [LLSV99].

In all cases, ridge line detection requires first and second order derivatives
computation. There exist well known methods for derivative estimation in
images, that we describe in section 3.2. For meshes, we describe different
methods that provide differential operators in section 3.1.

18



Considerations for discrete spaces We work with images and surface
meshes, which are represented in a discrete space. This requires some im-
portant adaptations of the theory of differential geometry, as described in
sections 3.1 and 3.2.

Differentiation is an ill-posed problem when applied to digital, sampled
signals as opposed to smooth mathematical functions [MvdEV96]. Smooth-
ing these signals regularizes this problem as showed in [FtHRKV]. Deriva-
tion is achieved by convolving the discrete function (e.g. the image) with the
derivative of a Gaussian of width σ. This can also be understood in a more
intuitive way as low-pass filtering the function to remove the high frequency
variations due to discretization.

Redefinition of maximal and minimal curvature Curvature is a scalar
magnitude that measures how bended a surface is at a point p, in a direction
~τ tangent to the surface (c.f. Appendix A). Therefore, there is one curvature
value, k~τi(p), defined at p for each tangent direction ~τi(p).

In the rest of the document, the convention from [OBS04], also used in
[LLSV99, Lp00], for principal curvature classification will be used: we will
call k1(p) the maximal curvature at p and k2(p) the minimal curvature, in
absolute value:

‖k1(p)‖ ≥ ‖k~τi(p)‖ ∀i
‖k2(p)‖ ≤ ‖k~τi(p)‖ ∀i (3.1)

The directions, ~τ1(p) and ~τ2(p) associated to k1(p) and k2(p) are the prin-
cipal (maximal and minimal, respectively) directions. For simplicity in the

notation, we define the vectors ~k1(p) = k1(p)~τ1(p) and ~k2(p) = k2(p)~τ2(p).

3.1 Differential geometry operators on trian-

gle meshes

3.1.1 Previous work on meshes

The surface models we work with are triangular meshes which consist of a
list of points (vertex) and a list of triangles linking these points (topology).
We want to compute principal curvatures and principal directions at every
vertex.

For that, it becomes necessary to compute the principal curvature ten-
sors of the surface (at each vertex). In [GI04] three ways of doing this are
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compared. We have followed The Normal Curvature Approximation Method,
which estimates the normal curvature in the direction of each edge passing
through each peak1. This consists, for each edge, in the computation of the
osculating circle that passes through the peak and its neighbor on that edge.
From the family of circles verifying this condition, we choose the one that is
orthogonal to the normal surface vector at the vertex. This yields a discrete
differential operator valid for piecewise linear meshes [HPW05].

For each vertex p of the mesh, the Weingarten matrix W (c.f. Appendix
A) gives the curvature in the direction of any tangent vector at each vertex.
Following [GI04], we estimate this matrix to compute curvatures.

For each vertex p, the curvature k̃ is estimated in the direction of each edge
going from p to each one of its neighbors qi (figure 3.2(a)). This direction,
~yi, is the projection of the edge p̄qi into the tangent plane at p. Then, the
curvature for each direction is estimated as the curvature of the circle passing
through p and qi and orthogonal to the normal vector to the surface at p,
~n(p) [MDSB03], as shown in the figure 3.2(b).

(a) Estimation of tangent directions (b) Estimation of the curvature in one
tangent direction

Figure 3.2: Principal curvatures computation in meshes

This gives the following system of equations:

k̃~yi(p) = ~yTi W (p)~yi (3.2)

1There are two other methods: The Quadric Surface Approximation Method, which
has been proven to be equivalent to the one we use; and the Adjacent-Normal Cubic
Approximation Method, which is more accurate but also more complex and requires more
computational time.
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It can be solved minimizing the expression ‖k̃~yi − ~yTi W~yi‖. Then, the
principal curvatures are the eigenvalues of W , and the principal directions
are the associated eigenvectors.

3.1.2 Algorithmic details

Direction of the normal and curvature vectors The outer-pointing
direction is taken as the positive orientation, for the normal vector ~n. Re-
garding the principal curvature vectors, their orientation depends basically
on the method used to compute the eigenvalues of W 2, i.e. only the direction
is meaningful. For consistence, we impose, at every vertex, the orientation
such that ~k1 × ~k2 = ~n.

Smoothing in meshes As we already mentioned at the beginning of this
chapter, some smoothing is required to obtain the best curvature computa-
tion. The smoothing can be done in two ways:

� Enlarging the neighborhood used for the curvature computation at
each vertex. Taking into account vertex located in the n-ring (n > 1)
helps the computation from being distorted for very local irregularities.
Global fitting methods like in [KMW96, OBS04] use this approach.

� Smoothing the mesh prior to the curvature computation. This process
reduces the sharpness of the surface and can be repeated for a higher
degree of smoothing. Some smoothing methods have proven to retain
desirable geometric features [DMSB99, HP04], but this is in general
not the case.

The second smoothing technique is used for three reasons. First, using
larger neighborhoods is computationally expensive. Second, with the second
technique we can select the degree of smoothing in a finer scale, while with the
first one we are restricted by the neighborhood size. And third, the meshes of
interest are usually shape models, which have been generated already using
a smoothing technique.

The degree of smoothing required depends on the sharpness of the surface
with respect to the size and number of the triangles. To give an example on
the degree of smoothing that is used in practice see figure 3.3(a). It shows a

2See the foot note in the Appendix B for a justification on this.
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(a) Original mesh, obtained from a ground
truth segmentation of a CT liver image.

(b) Smoothing version of the same mesh.

Figure 3.3: Triangulated meshes representing a liver meshes

mesh representing the surface of a liver. It has 2562 vertex and 5120 triangles.
Figure 3.3(b) shows that same mesh after applying the smoothing.

3.2 Differential geometry operators on images

The application of differential geometry to 3D images uses discretized deriva-
tive operators [MvdEV96]. This operators are broadly used for image pro-
cessing and well documented in the literature. Curvatures are obtained from
first and second order derivatives of the intensity function I(x, y, z). Several
approaches exist to estimate the derivatives of the intensity function, like
[Der87] used in [MBF92, MB92] or [MvdEV96].

3.2.1 An overview on curvature and ridge-like regions
computation methods

There are two cases to be considered:

� Images where the surfaces are defined by isophotes (i.e. surfaces of
constant intensity). This case includes binary images.

� Images where surfaces present variation in gray level. This is the most
general case, and medical images are globally of this type; that is why
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segmentation based in global thresholding of the intensity value is not
feasible.

3.2.2 Images containing iso-surfaces

When the surface of an object in an image has a constant gray value, the
Weingarten matrix W can be computed at each voxel. Then, curvatures are
obtained by an eigen-analysis of W as we did for meshes (c.f. section 3.1).

The curvature of isophotes, i.e. the isophote curvature, κ~τ is computed
along the direction ~τ . For simplicity of the explanation, this curvature is
defined in the 2D case and then extend it to 3D [MvdEV96]:

In the 2D case, the intensity function can be interpreted as the parametriza-
tion of a surface in R3. Let ~g = (Ix, Iy) be the gradient of I, which is oriented
in the direction perpendicular to isophotes. Let θ be the orientation of the
2D gradient, θ = arctan( Iy

Ix
)3. Let ~τ be the direction tangent to the curve.

Then, ~τ is orthogonal to ~g, so

~τ =
(Iy,−Ix)
‖~g‖

(3.3)

and κ is the variation of θ along the direction ~τ

κ~τ =
∂θ

∂~τ
=

2IxIyIxy − I2
yIxx − I2

xIyy

(I2
x + I2

y )3/2
(3.4)

yields the expression,

κ~τ = −~τ
TH~τ

‖~g‖
(3.5)

where H is the Hessian matrix.
Comparing equation 3.5 with equation A.14, it is evident that W = − H

‖~g‖ .

The same expression is obtained in [MB92] starting from a different point,
as follows. Given that the gradient and the tangent vector are orthogonal
(which is true for isophotes), i.e. ~g · ~τ = 0, we have

∂(~g · ~τ)

∂s
=
∂~g

∂s
· ~τ + ~g · ∂~τ

∂s
= 0, (3.6)

where ∂s is a differential arc length of the contour. We also know for the
definition of curvature (c.f. appendix A) that

3If Ix = 0, then θ = π
2
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∂~τ

∂s
= k~n = k

~g

‖~g‖
(3.7)

Applying the chain rule to the derivative of the gradient we get

∂~g

∂s
=
∂~g

∂x

∂x

∂s
+
∂~g

∂y

∂y

∂s
= H~τ (3.8)

Merging the results from equations 3.6, 3.7 and 3.8, the result is exactly
the same as in equation 3.5:

∂~g
∂s
· ~τ + ~g · ∂~τ

∂s
= 0 and ∂~g

∂s
· ~τ = ~τ · ∂~g

∂s
= [~τ ]T ·

[
∂~g
∂s

]
in matrix notation

~τTH~τ + ~g · k ~g
‖~g‖ = 0

~τTH~τ = −k ~g·~g‖~g‖ = −k‖~g‖

k = −~τTH~τ
‖~g‖

(3.9)
This conclusion can be extended to 3D. For that, the direction ~τ is ex-

tended to any direction in the tangent plane, defined by (i.e. orthogonal to)
the gradient direction. In 3D, curvatures are then computed as the eigenval-
ues of the W restricted to the tangent plane.

To project W into the tangent plane, local coordinate system is defined
for each voxel, where one of the vectors of the local basis is aligned with the
gradient (normal to the object) and the other two are in the tangent plane.
This gives the transformation matrix

P =

 nx t1x t2x
ny t1y t2y
nz t1z t2z

 (3.10)

where ~n = (nx, ny, nz) is the normalized vector orthogonal to the surface (i.e.,
the gradient normalized: ~g

‖~g‖), and ~t1 and ~t2 are two arbitrary normalized

vectors, orthogonal to each other and to ~n (c.f. appendix C).
First, W is expressed in the local basis which is aligned with the normal

vector ~n. This yields W P = P TWP . Since the first vector in P is ~n, the
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2D Weingarten matrix in the tangent plane coordinates is obtained removing
the first column from W P

W P =

 . . .
. w00 w01

. w10 w11

 =

[
. .
. W2D

]
(3.11)

Then, principal curvatures are the eigenvalues of W2D, and principal direc-
tions are the associated eigenvectors. Once obtained, the inverse transform
has to be applied to the eigenvectors to bring them to the 3D space again.
Note that this approach meets the theoretical curvature values, which allows
value matching with for example meshes.

3.2.3 General gray-level images

If the contours in the image do not have a constant gray value, the gradient
at an edge point only approximates the normal to the surface and differential
operators are not invariant. This motivated the second approach proposed
in [MB92], where curvatures are obtained from curvatures in a hyper-surface
defined on <4; however, this approach requires some assumptions in the gray
level distribution of the image which makes it less general. Nevertheless,
the gradient is assumed to be a good enough estimator for the normal vec-
tor. Since curves are not isophotes any more, another approach is required.
Theory is explained on 2D images and then extended to 3D.

In [MvdEV96], curvature is estimated from the Hessian matrix H of an
image. Let I(x, y) be the intensity function. Then a gradient-based local co-
ordinate system is defined (note that the gradient approximates the direction
normal to the contours):

~t = (Iy,−Ix) ~g = (Ix, Iy) ∝ ~n (3.12)

If I(x, y) is represented as a parametrized surface in <3, the gradient at
any point points towards the ridges (with some exceptions, c.f. [MvdEV96]),
and in the ridge it is aligned with the ridge line (unless the ridge is perfectly
flat). From one side to the ridge to the other, the gradient reverses its
direction.

In the case of a crest, on the ridge ~t is perpendicular to the ridge line.
Therefore the intensity profile along ~t will be concave compared to the neigh-
borhood of non-ridge points. Then, the second order derivative in that di-
rection, I~t~t, will have a local minimum at the ridge (a local maximum if it
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is a valley instead of a crest). This means that the I~t~t operator measures
ridgeness. This operator can be computed as follows:

I~t~t =
1

‖~t‖2
(~t · ∇)2I =

I2
yIxx − 2IxIyIxy + I2

xIyy

(I2
x + I2

y )
(3.13)

Note that expression 3.13 is the same as expression 3.4 (for isophote
curvature) but with a −1 factor and divided by ‖~g‖.

In 3D, the tangent vector is actually a tangent plane. Therefore, the
direction ~t has to be chosen:

1. In the plane normal to the local gradient (tangent plane).

2. In the direction in this plane for which second directional derivative is
minimum.

Finding this direction requires a minimization process. This problem is
equivalent to finding the eigenvector associated to the maximal eigenvalue
of H2D , which is the projection of H into the tangent plane, in the same
way we did in the previous section. For convenience, we multiply by −1 the
Hessian matrix. This way, the only difference with the isophotes case is a 1

‖~g‖
factor.

This approach in not invariant regarding transformations in gray values.
This means that the same shape, represented in two images with different
gray values will result in different curvature values. Moreover, for a given im-
age containing different objects with a certain range of gray values, curvature
value may be meaningless.

The derivative operation in an image is computed as the convolution of a
derivative mask G (first or second derivative of the Gaussian) with the gray
level value function, I(x, y, z), which is a linear operation. This means that
the curvature value for a given object will vary linearly with the gray value

A× (I(x, y, z)⊗G) = (I(x, y, z)× A)⊗G, (3.14)

where A is an arbitrary constant.

To verify this we compute curvature value in a binary sphere (constant
curvature value), of radius 10mm (curvature value of 0.1 1

mm
), and vary the

gray level value (figures 3.4(a) and 3.4(b)).
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(a) Curvature of the sphere for several intensity values

(b) Curvature value where the histogram is at its
maximum (histogram peak) for different intensity
values

Figure 3.4: Influence of the smoothing factor from the second order derivative
in the curvature computation

This means that for a given object in an image, expected curvature value
is only achieved for a particular gray value of the object. Then, curvature
value is not sufficient for object detection (unless gray level distribution is
a part of the prior knowledge, for example). Though, the curvature sign
remains meaningful. We will use this information in the next sections, paying
special attention to the zero crossings of the curvature value.

3.2.4 Discussion on the two approaches

The two approaches presented already result in two ridge seeking operators
: o1 = − I~n~n

‖~g‖ (for images where contours have a constant gray value) and
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o2 = −I~n~n. In a more general way, the operator o3 = − I~n~n
‖~g‖α with α ∈ [0, 1] is

investigated in [MvdEV96, LLSV99].
As presented in [MvdEV96], o1 is insensitive to intensity transformations,

which means that it is invariant for different gray level values, and gives the
expected curvature values. This is desired for value matching. However, o2

ignores spurious structures in the image background; the fact of dividing by
the gradient shows up high curvature values in regions where the gradient is
low. Finally, o3 controls the trade-off between o1 and o2. For a α closer to 1,
the range of real values of the curvature decreases, making more difficult to
classify regions.

3.2.5 Algorithmic details

3.2.5.1 First order derivatives

Reliability of the normal vector estimation The normal vector esti-
mation is robust even when the surface is not of constant gray level. Let
I(x, y) be the intensity function of a 2D image. I(x, y) can also be consid-
ered as the parametrization of a 3D surface describing the gray level of the
image. Then, a differential area of the surface is a square where the sides are
∂I(x,y)
∂x

and ∂I(x,y)
∂y

. This means that the vectors (1, 0, ∂I(x,y)
∂x

) and (0, 1, ∂I(x,y)
∂y

)

are in the tangent plane of the surface at (x, y). Then, the cross product of
these two vectors is in the direction of the vector normal to the surface:

~N(x, y) = (1, 0,
∂I(x, y)

∂x
)× (0, 1,

∂I(x, y)

∂y
) = (−∂I(x, y)

∂x
,−∂I(x, y)

∂y
, 1)

(3.15)

As the true image is in 2D, the projection of ~N on the XY plane gives the
vector normal to the object in 2D: ~N2D(x, y) = (−∂I(x,y)

∂x
,−∂I(x,y)

∂y
). This is,

as we wanted to prove, the gradient of the intensity function, times a −1
factor. This is extensible to any dimension, in particular to 3D.

Orientation of the gradient direction As indicated in the previous
paragraph, there is factor of −1 that multiplies the normal vector. For this
reason, to be consistent with the computation in meshes, this factor is applied
to the gradient to produce a positive, outwards oriented normal vector.

Smoothing prior to the derivative computation For Hessian and gra-
dient computation, derivative filters are used, but as the derivative operators
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Figure 3.5: A slice of the synthetic image used for the smoothing study. The
gap width d is highlighted in red. Dimensions are 104× 52× 52 voxels with
an isotropic spacing of 1mm, which is of the order of the CT images we work
with.

are sensible to noise, a smoothing step will improve the result [MBF92]. In
practice, the derivative of a Gaussian (derivative and smoothing filter, imple-
mentation proposed by Deriche [Der87]) is used, to perform both smoothing
and derivation in one step. This filter assures that the differentiation problem
is well-posed in this context [FtHRKV]. The smoothing factor is controlled
by the σ of the Gaussian.

The higher the order of the derivative is, the more sensible it becomes to
noise. That is why the σ for the 2nd order derivative is higher than for the
1st order (σ2 > σ1).

To find the optimal smoothing for the gradient, we use a the synthetic
image of the figure 3.5 (a 3D ellipsoid surrounded by a solid region). For the
study, the width of the gap is modified to see the impact of the smoothing
on the ability to detect narrow separations between objects.

To find the optimal smoothing , the metric defined in appendix B is used.
The normal vector computed from the image (i.e. the gradient normalized)
and the normal vector computed from the mesh are compared. It is assumed
that the mesh is smooth enough to provide perfect normal vectors (figure
3.6).

Experiments are run for a gap width d ∈ {2, 4, 6, 8, 10,∞}mm, and σ1 ∈
[1, 5]. Figure 3.7 shows how for a d > 4mm, σ1,optimal ≈ 2.5mm. However, a
σ1 ∈ (2, 4) can be used since variation within this range is almost null.

For d ≤ 4mm, σ1 has to be reduced to avoid structure overlapping due
to smoothing. For that reason, σ1 has to be lower than d, which means that
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Figure 3.6: Normal vectors in the ellipsoid surface mesh.

for d < 2mm, vector matching is not feasible at this resolution (voxel size is
1× 1× 1mm).

(a) Distance between normal vectors
computed from the image and from the
mesh for different gap widths and dif-
ferent σ1 values.

(b) Distance between normal vectors
computed from the image and from the
mesh for different gap widths and dif-
ferent σ1 values, zoomed in.

Figure 3.7: Influence of the smoothing in the gradient computation.

3.2.5.2 Second order derivatives

Gap between two objects and resolution Second order derivatives are
more sensible to noise than first order’s. This means that we need a higher σ
for them. Also, the optimal σ1 for an accurate gradient computation estab-
lishes a lower bound for σ2. For the experiments in this section, the metric
described in appendix B is used with the maximal principal direction, ~k1.

Metric value depends more in σ2 than in σ1, as shown in figure 3.8(a) for
d =∞. Therefore, the optimal σ1 found in the previous section is used, then
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σ2 is modified.

(a) Distance between ~k1 computed
from the image and from the mesh
for different σ1 and σ2 values.

(b) Optimal σ2 for different gap widths.

Figure 3.8: Influence of the smoothing in the gradient computation.

Figure 3.8(b) shows how for d > 5mm, σ2,optimal ≈ 3mm. If d < 6mm, σ2

has to decrease for the same reason as for σ1.
Note that the fact of using different σ in the first and the second order

derivative introduces a small error in the curvature value when using the
operator o1 (c.f section 3.2.4).

3.2.6 Curvature sign in images

Another point one should pay attention to is the following: in meshes the
normal vector has been defined as an outer-pointing vector. To be coherent
with meshes, in images it has to be the same. However, the orientation of
the gradient depends on whether the object is represented in a brighter or
darker intensity than the background. Using typical derivative masks, as for
example, in 2D along x and y: −1 0 1

−k 0 k
−1 0 1

  −1 −k −1
0 0 0
1 k 1

 (3.16)

then if the object’s intensity is higher than the background (as it is, for
convention, in binary images), one can verify that the vector normal to the
surface is an inward-pointing vector. Let our case be that, the sign has to be
inversed to remain coherent with the curvature of the mesh.
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3.3 Building up ridge lines out of curvatures

3.3.1 Overview on methods for ridge-lines detection

Once the differential operators are available, ridge points are detected from
the principal curvatures of the surface. Ridge lines are the ensemble of these
points. There are two cases: ridge line detection in meshes (section 3.3.2)
and in volumetric gray scale images (section 3.3.3).

3.3.2 Ridge lines in meshes

Ridge lines detection in meshes uses the discrete differential operators de-
scribed in section 3.1 to compute the principal curvatures at each peak.
Then, all the solutions proposed start by local maxima and minima search of
this quantity, which involves the derivative of the principal curvatures (the
extremality [Thi96]). This yields a set of points marked as potential crest
lines points.

Different approaches have been proposed to build up ridge lines from
these candidate points. In [OBS04] the candidate points that are neighbors
are connected. Then the strength of the each ridge line is measured by the
integral of the maximal principal curvature along the line, and this value is
used for thresholding ”weak” crest lines.

In [SF04] the principal curvature of each peak is compared with its direct
neighbors in the principal curvature direction to check if it is a local maxima
or not, and this gives a set of crest points. The region made of this ensemble of
crest points is grown (e.g. by means of morphological operations) to eliminate
discontinuities. This yields a connected region which is skeletonized, again
with morphological operations. This finally gives a set very fine connected
lines on the edges of the triangulation. Advantages of this method are that
it assures good positioning, line continuity and unicity of the crest lines.

In [YBS05] the crest points are detected as in [OBS04], but as in [SF04]
they try to avoid crest line fragmentation. To do this, the 1-ring neighbor-
hood of each candidate peak is inspected and if a criteria is satisfied then the
candidate points are connected. Then the line strength is computed but this
time operators of a superior order are used. This finally gives better results
than in [OBS04] with a yet fast method.

In [HPW05] the important contribution is a smoothing stage in which ex-
tremalities are filtered to stabilize the computation and obtain high quality
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crest lines. This consist in classifying triangles in regular, where the extremal-
ity computation is immediate, and singular, where neighbor triangles are used
to compute the extremality. Then, a smoothing operator (e.g. a Laplacian
operator as defined in [MDSB03]) is applied on the extremality values. Fi-
nally, these values are thresholded with the method proposed in [OBS04].
This solution produces high quality crest lines, because the smoothing stage
reduces the noise and gives some ”contextual” information.

A clear and complete summary and comparison of these methods can be
found in [YBYS08].

In [ZGM09] an important improvement is introduced in the crest lines
detection scheme: two types of feature are used, so-called local and contex-
tual features (while the previous approaches remained local). Crest points
are classified as in [SF04]. Then principal curvatures are computed on the
K-neighborhood, and the values for neighbors at different distances are com-
pared. This yields the ”similarity function”, that is exploited together with
the classified points. This function reveals the difference between the vertex
and its surrounding context, which makes the algorithm very robust with
respect to noise and irregularities.

3.3.3 Ridge lines in 3D images

In volumetric images as well, ridge lines are obtained with the first, second
and, for some methods, third order derivative of the intensity function.

In most cases [MBF92, MvdEV96, LLSV99], the ”standard” approach is
used: principal curvatures are computed from first and second derivatives
of the intensity function, and extremality functions are computed from the
derivative of the principal curvatures. The extremality is used then to deter-
mine the ridge point using a threshold.

This approach assumes that ridge lines have a constant gray value; if this
is not true, the gradient at an ridge point does not approximate the normal
to the surface and differential operators are not invariant. This motivated
the second approach proposed in [MB92], where curvatures are obtained from
curvatures in a hypersurface defined on R4 as we introduced in section 3.2.1.

Other solutions to this problem, based on Gaussian smoothing, have been
proposed in [MvdEV96] with good results, or in [LLSV99] where several
ridge lines detecting methods are evaluated, including a multi-scale Gaussian
smoothing for regularization purposes prior to the detection.
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Chapter 4

Exploiting curvature
information for object detection

This chapter studies how curvature information is useful for object detection
in an image having a certain prior knowledge on its shape or other features.
This prior knowledge may be contained in a shape model (i.e. a triangulated
mesh).

Curvature information consist on two different informations:

1. Curvature value, k, describes how much a surface is bended along a cer-
tain direction. Directions where maximal (k1) and minimal (k2) curva-
ture are achieved, are called principal curvatures. The mean curvature
(noted H) is the average of the curvature value along every direction
of the surface (also defined as H = k1+k2

2
); the Gaussian curvature is

K = k1k2.

2. Curvature direction is the direction in the tangent plane where curva-
ture value is computed along.

In the following sections, both curvature value and direction are analyzed.

4.1 Curvature in meshes and binary images

4.1.1 Curvature value

When working with binary images, we use the o1 operator described in 3.2.2
for curvature computation. This operator is invariant to gray value transfor-

35



Figure 4.1: Curvature histogram for a binary sphere at different gray values.
The background was set to 0 in all cases. The smoothing rate used was
σ1 = 2 and σ2 = 3. The figure also shows the curvature computed for a
mesh.

mations and thus the curvature value computed from the image approximates
the value computed from meshes. However this value remains an approxi-
mation because:

1. The difference in the first order and second order derivatives smoothing
σ2 ≥ σ1 (c.f. section 3.2.5).

2. The smoothing of the mesh. In general, this smoothing modifies the
shape of the mesh and as a consequence, curvature changes (c.f. section
3.1).

Accuracy of curvature value computation was tested in a sphere (constant
curvature value), an ellipsoid and a ground truth segmentation of a liver.

Figure 4.1 shows the goodness of the matching in the case of the sphere,
where we have represented the curvature histogram. The sphere represented
in a set of binary images, with gray value I ranging from 1 to 1000. The
sphere had a radius of 20mm and a voxel size of 1 × 1 × 1mm. In all cases
the theoretical curvature value was achieved (0.05 1

mm
). However, there are

many points with curvature values close to zero. This is due to the spurious
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structures that appear in the image background when using the operator
o1 (c.f. section 3.2.4). The higher the gray value is, the less the spurious
structures appear.

Curvature value distribution was also studied. Figures 4.2(a), 4.2(b),
4.3(c), 4.3(b), 4.4(b) and 4.4(c) demonstrate that the curvature distribution
on the surface of both the binary image and the mesh match.

The 5% of the points with highest curvature in images was filtered to get
the ridge lines. In meshes, the 25% was needed to obtain the same regions.

This is explained by a curvature histogram study. In the histogram of an
image (figure 4.2(a)), there is a peak of negative curvature close to zero. This
is due to spurious structures that appear in the background as mentioned
in section 3.2.4. When removing this peak, by thresholding, no significant
changes were noticed in the image. This peak is not present in meshes (figure
4.2(b)), and even for different smoothing factors, this peak represents the 20%
of extra points that have to be removed in images.

(a) Curvature histogram for an image (b) Curvature histogram for a mesh

Figure 4.2: Liver curvature histogram comparison between meshes and im-
ages

The thresholded curvature images are shown in figures 4.3(c) and 4.3(b).
Exactly the same thresholds have been used on a femur, also obtaining sat-
isfactory results as in figures 4.4(b) and 4.4(c).
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(a) Original liver bi-
nary image

(b) Thresholded liver image (c) Thresholded liver mesh

Figure 4.3: Curvature computation in a liver

(a) Original femur binary im-
age

(b) Thresholded femur
image

(c) Thresholded femur
mesh

Figure 4.4: Curvature computation in a femur

These results indicate that it is possible to directly compare in an absolute
scale the curvature value between a binary image and a triangulated mesh.

4.1.2 Curvature directions

In this section we study the matching of principal directions between meshes
and binary images. For this, we use the distance definition from the appendix
B. Figure 4.5(a) to 4.5(c) show the principal directions computed on a mesh
and on an image.
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(a) Curvature directions in a liver
binary image. Maximal curvatures
are indicated with red vectors, and
minimal curvature with green vec-
tors.

(b) Detail of a ridge from the image. (c) Detail of a ridge from the mesh.

Figure 4.5: Principal curvature directions computed on a liver mesh and a
liver binary image.

Principal curvature direction also showed good matching between binary
images and meshes. We computed the distance between the maximal cur-
vature direction in an ellipsoid and in a liver. The ellipsoid showed a high
accuracy in the matching (approximately 1 circle of mean misalignment) ex-
cept for the poles. In the poles, the ellipsoid is locally sphere-shaped, so
principal directions are arbitrary because k~τi is constant ∀i (figures 4.7(a)
and 4.7(b)).

In the liver, the matching resulted in a mean misalignment of 27.24 circle

(figures 4.8(a) and 4.8(b)). The matching was done using a binary liver and
a ground truth mesh (figure 4.6).
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(a) Binary image of the liver. (b) Ground truth segmentation of the
liver

Figure 4.6: Binary image and mesh used for matching tests.

Although this mesh fits perfectly the liver image, it needs to be smoothed
as explained in section 3.1. This explains why the error is located at sharp
ridges and at regions where both curvatures are very similar or null (sphere-
like or very flat).

(a) Distribution of the distance be-
tween maximal curvature directions
from a mesh and a binary ellipsoid.

(b) Cumulated histogram of the distance in an
ellipsoid

Figure 4.7: Vector metric in synthetic data.
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(a) Distribution of the distance between
maximal curvature directions from a
mesh and a binary liver.

(b) Cumulated histogram of the distance
in a liver

Figure 4.8: Vector metric in binarised real data

4.2 Curvature in meshes and gray level im-

ages

In this section we study the use of curvature values and curvature direc-
tions for matching a mesh with an image. The aim of this study is to show
feasibility of the use of curvature features in the frame of MBS.

4.2.1 Using curvature directions as a feature

The geometry of the model represents, to some extent, the geometry of the
object in the image to be segmented. In this section, we study the relationship
between principal curvature directions from the model and from the image.
We are particularly interested at the correspondence of curvature features at
the ridge-like regions.

If the model represents exactly the object in the image, the vector metric
defined in the appendix B is used as for binary images. Figure 4.9(a) shows
that the metric has a higher value that in the binary case. Figure 4.9(b)
shows the vector distance histogram compared to the vector distance for the
binary image.
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(a) Metric distribution on
the mesh surface

(b) Cumulated histogram of the curvature
value

Figure 4.9: Vector metric in real data.

If the model does not have exactly the same shape as the object in the
image (which is usually the case), vectors do not match. Figure 4.10(a)
shows some examples of a model and the image we want to segment. For
visualization purposes, we have included the ground truth segmentation.

As depicted in figure 4.10(b), even if the model and the object have some
geometrical similarity, curvature directions, specially in ridge-like regions, do
not match in general. This results in poor performance when searching for
the best matching point along the feature line in the MBS algorithm.

(a) Model (in yellow) of a liver and the cor-
responding ground truth segmentation (in
red).

(b) Difference in the orientation of prin-
cipal directions in the image and in the
model.

Figure 4.10: Principal directions in a model and a real image.
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4.2.2 Using curvature values as a feature

The direct matching of curvature value is not feasible because the only opera-
tor we can use in these images is o2 (c.f. 3.2.4). This operator is not invariant
to intensity value transformations, and therefore the curvature values do not
match with the values obtained from the mesh.

However, some authors [MB92, MvdEV96] have used operators o1 or o3 in
medical images. They found good results in angiography images of the vessels
and in MRI1 crane images. Our case differs from them both in the fact that
image gradient is significantly lower at the surfaces (the contrast product in
the vessels and the bones in the crane provide a higher contrast). Also, the
CT resolution is smaller that MRI’s, which imposes severe restrictions in the
minimal smoothing required for our application (c.f. section 3.2). Finally,
the fact of normalizing the Hessian matrix with the gradient results in a
worsening of surface localization (c.f. section 3.2), as we verified in the case
of the liver (figures 4.11(a) and 4.11(b)), even for binary images where surface
is clearly defined.

(a) Maximal curvature value in a
liver binary image, using the opera-
tor o1.

(b) Maximal curvature value in a liver
binary image, using the operator o2.

Figure 4.11: Comparison between curvature value distribution using o1 and
o2 for curvature computation

1Magnetic Resonance Imaging
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4.2.2.1 Zero crossings of the curvature value

Even if curvature value is not meaningful, due to variations of the gray value
along the surface, curvature sign might still be useful. Under the assumption
that objects are brighter than the background, a concave surface will have
positive curvature and a convex surface will have negative curvature (figure
4.12). This yields a zero crossing of the curvature value at the gap between
both surfaces.

(a) Feature search line on a vertex of
the ellipsoid

(b) Curvature profile along the
the feature line. The zero cross-
ing is located in the middle of the
gap.

(c) Location of zero crossings (in yellow) of the maximal
curvature value in a ellipsoid surrounded by a volume. The
ellipsoid surface is highlighted in red.

Figure 4.12: Zero crossings of the curvature value in synthetic data

However, zero crossing location is more complex when working with real
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data. The assumption of the curvature sign being equal in images and in
meshes is valid only if, in the image, objects are darker than the surround-
ing material (otherwise, curvature sign changes). In medical images, this is
mostly true for non deformable structures such as bones. In the case of soft
tissues like liver, lungs, spleen, etc., this may not be true at every point of
the surface. However, experimental results have shown concavity in the gray
level profile in most cases (figure 4.13).

(a) Regions in a CT image where the
gap between two objects is darker
than the objects themselves (green).
In red, regions where at this resolu-
tion there is no gap.

(b) Curvature profile in a border, where we
are able to distinguish the zero crossing. In
the curvature profile, liver is highlighted in
yellow; the gap, in green; and the intestine
in blue. Spurious zero crossings appear in-
side the intestine due to variations in the gray
value.

Figure 4.13: Zero crossings of the curvature value in real data.

Focusing only in points where object is darker than the surrounding mate-
rial, zero crossing of the curvature value are at the gap between two objects
(figure 4.13(b)). If the object of interest is convex, the zero crossing goes
from positive to negative and vice versa.

It is expected that the model will be convex in regions where the object
of interest is also convex and vice versa. This would allow the detection of
the right zero crossings of the curvature value from the image. As shown
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in figure 4.14, this is true only in some cases, so this criteria is not robust
enough.

Figure 4.14: Highlight on the concavities and convexities of the liver where
model and image do not match, at an arbitrary axial slice. The model is
represented by the yellow contour, and the image ground truth segmentation
is represented by the red contour.

Experiments have shown poor performance when detecting zero cross-
ings of curvature, i.e. a visual inspection revealed that the location of zero
crossings is often wrong. This is due to several reasons:

1. If the feature search line is very long, several structures are intersected
and thus several zero crossings are found. Then an additional criteria
is needed to solve the ambiguity.

2. Variation of gray value inside a single structure generates spurious zero
crossings (figure 4.13(b)).

3. When two structures are very close, the gap between them may be too
narrow with respect to the smoothing factor and the image resolution.
Then, some zero crossings may be missed.

4. When two contiguous structures are relatively far away (i.e. the feature
search line does not achieve the second structure), there will not be any
zero crossing at all.
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Additional criteria have been tested to help the decision process when
trying to detect the right zero crossings2 but none of them seemed to give
robust results.

4.2.3 Exploiting curvature value profile

As shown in previous sections, there is no matching in curvature value and
curvature directions computed for the mesh and the corresponding features
computed from the image. Nevertheless, if these features match within dif-
ferent images of the same structure (i.e. the same organ in different patients),
it would be possible to incorporate this knowledge to the model through a
learning process.

In this section curvature value profile at corresponding points from differ-
ent images is investigate. Each image in the training set has a ground truth
segmentation of the liver, in the form of a triangulated mesh.

Profile repeatability was studied at three points of three different livers
(figure 4.15). The profile line is centered at each point and oriented along the
normal direction. Points #1 and #2 are located at ridge-like regions. Point
#3 is located on a flat region of the surface (figure 4.15). The correspondence
between each point of the three livers was done manually.

(a) Liver #1. (b) Liver #2. (c) Liver #3.

Figure 4.15: Oblique slice at a corresponding point #1 for three different
liver images.

Point #1

This point is located at the sharpest region of the surface. Figure 4.16 shows
the selected vertex (Point#1) of the mesh and an oblique slice with the profile

2These include: selecting the closest ZC, the ZC with highest gradient, the ZC where
curvature vectors better match, etc.
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line for each case.

(a) Liver #1. (b) Liver #2.

(c) Liver #3.

Figure 4.16: Oblique slice at a corresponding point #1 for three different
liver images.

Regarding the gray level profile (figure 4.17), the correlation between the
three livers is not very clear; in this case, gray level profile is not a useful
feature.
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(a) Liver #1. (b) Liver #2. (c) Liver #3.

Figure 4.17: Gray level profile centered at point #1 along the normal direc-
tion, for three different liver images.

Comparing the three maximal curvature value profiles (figure 4.18), in
the three cases curvature is high and positive at the border of the liver,
and becomes negative outside of it. An smoothed version of the profiles is
depicted in figure 4.18(d) to 4.18(f) to illustrate the visual correlation. In
this case, matching is not evident because of the gray value variations in the
inside of the liver.

In figure 4.16(b) the ground truth does not reach the real border of the
liver, which explains why figure 4.18(b) is displaced with respect to figures
4.18(a) and 4.18(c). This means that curvature profile may help to improve
segmentation at ridge-like regions.
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(a) Liver #1. (b) Liver #2. (c) Liver #3.

(d) Ideal curvature profile (e) Ideal curvature profile (f) Ideal curvature profile

Figure 4.18: Maximal curvature profile centered at point #1 along the normal
direction, for three different liver images.

Point #2

Figure 4.19 shows the location of the point #2 and the profile line for each
liver. Figure 4.20 contains the gray level profile and figure 4.21 shows the
maximal curvature profile.
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(a) Liver #1. (b) Liver #2.

(c) Liver #3.

Figure 4.19: Oblique slice at a corresponding point #2 for three different
liver images.

(a) Liver #1. (b) Liver #2. (c) Liver #3.

Figure 4.20: Gray level profile centered at point #2 along the normal direc-
tion, for three different liver images.
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(a) Liver #1. (b) Liver #2. (c) Liver #3.

(d) Ideal curvature profile (e) Ideal curvature profile (f) Ideal curvature profile

Figure 4.21: Maximal curvature profile centered at point #2 along the normal
direction, for three different liver images.

In this case, gray level profile matches between the three livers. Experi-
ments show that when this happens, curvature value profile also matches, as
depicted in figure 4.21.

Point #3

The last case evaluates a region of very low curvature (figure 4.22). Gray level
profiles show high similarity (figure 4.23). The curvature value (figure 4.24) is
very small and positive at the surface, followed by a high negative curvature
from the surrounding object (the ribcage), and a very high curvature (the
rib).
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(a) Liver #1. (b) Liver #2.

(c) Liver #3. (d) Liver #3.

Figure 4.22: Oblique slice at a corresponding point #3 for three different
liver images.

(a) Liver #1. (b) Liver #2. (c) Liver #3.

Figure 4.23: Gray level profile centered at point #3 along the normal direc-
tion, for three different liver images.
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(a) Liver #1. (b) Liver #2. (c) Liver #3.

Figure 4.24: Maximal curvature profile centered at point #3 along the normal
direction, for three different liver images.

4.2.4 Exploiting curvature vector profile

Vectors can be also computed along the feature profile. This produces a
3D profile, which is difficult to visualize and analyze. A component-by-
component analyze does not give any usable correlation.

Another way to obtain a 1D profile function from vectors is to represent
the distance (defined as in Appendix B) between the curvature direction from
the mesh and the curvature direction computed from the image (at each point
in the profile).

These profiles do not show any exploitable correlation neither. The full
data for vectorial profile, for the three points defined in section 4.2.3 can be
checked in appendix E.

54



Chapter 5

Discussion and further work

This chapter explains how curvature features may be used for matching a
triangulated mesh to an image in the framework of MBS. Four scenarios are
considered:

1. Matching a mesh and an image that represent the same surface.

2. Matching a mesh and an image when the mesh approximates the surface
represented in the image.

3. Establishing correspondence between different meshes that represent
the same object.

4. Initializing the model by registration.

Also, an overview on the future work can be found at the end of this
chapter.

5.1 Mesh and Image represent the same sur-

face

When a triangulated mesh and an image represent the same object, there
is a correlation between principal curvatures and principal directions of the
mesh and the image. The ground truth segmentation of a liver image (figure
5.1(c)) has been binarized (figure 5.1(b)) and then smoothed (figure 5.1(a)).
Accuracy in the matching of curvature value and direction was compared
among the three cases. (c.f. table 5.1).
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(a) Smoothed binary liver
and mesh

(b) Non smoothed binary
liver and mesh

(c) gray-level liver and
ground truth segmentation

Figure 5.1: Slice of three different 3D liver images, with the mesh highlighted
in red.

binary liver gray scale
smth no smth liver

k value Mean 46.50% 75.02% 201.17%
Std. Dv. 39.32% 46.32% 156.45%

k direction Mean 9.07 ◦ 27.24 ◦ 45.10 ◦

Std. Dv. 11.35 ◦ 28.84 ◦ 33.04 ◦

Table 5.1: Error of curvature matching. Curvature computed from the mesh
(values and directions) is used as reference. For simplicity of the interpreta-
tion, vector metric has been translated to angle deviation in degrees. Cur-
vature value is expressed in relative error,

‖kimage−kmesh‖
‖kmesh‖

.

In general, vectors are a more robust feature. Curvature values showed
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correlation only in some regions of the object. There are two kind of areas
where error is particularly high:

� In flat areas the curvature value is low, which results in a high relative
error even if the absolute error is very small (figure 5.2).

(a) Original liver.

(b) Original liver with the curvature value error highlighted
with spheres. The size of the spheres is proportional to the
error.

Figure 5.2: Regions where curvature value error is higher in the case of a
binary image and a smooth mesh (Front view of the liver).

� Due to smoothing of the image, regions which are concave and narrow
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may collapse (figure 5.3).

(a) Original liver.

(b) Original liver with the curvature value error highlighted with spheres.
The size of the spheres is proportional to the error.

Figure 5.3: Regions where curvature value error is higher in the case of a
binary image and a smooth mesh (back view of the liver).

The closest-neighbor interpolation1 is used to compute the curvature in
the image at the position of a vertex of the mesh. Closest neighbor is a

1The curvature value and direction for every point in the search profile and at the
position of the mesh vertices has been computed using a closest neighbor interpolation.
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simple but inaccurate interpolation method that may introduce a significant
error. To compensate for this error, table 5.2 shows the results when the best
matching value is selected from a neighborhood of the vertex of 3 × 3 × 3
voxels.

binary liver gray scale
smth no smth liver

k value Mean 28.23% 44.15% 73.32%
Std. Dv. 19.74% 32.62% 64.95%

k direction Mean 3.77 ◦ 15.00 ◦ 22.95 ◦

Std. Dv. 5.20 ◦ 16.76 ◦ 22.24 ◦

Table 5.2: Error of curvature matching. To compensate for the closest neigh-
bor interpolation error, we take the best point in a neighborhood of 3×3×3
voxels.

For a smooth mesh, and an image representing an object of the same
shape, curvature is proven to have a high correlation between meshes and
images, specially in convex ridge-like regions. Improving the interpolation
method may significantly improve the error rate.

5.2 The mesh approximates the surface rep-

resented in the image

If the mesh and the image do not represent the same object, but the mesh
is a model that approximates the shape of the expected object in the image,
direct matching of curvature values or directions is in general not feasible
because of the difference in the geometry.

If the distribution of curvature features is repeatable among different im-
ages in a data set, it is possible to build an statistical model and merge the
value with the geometrical model. In other words, the model can learn the
feature distribution from a training set, and then try to find this feature dur-
ing the segmentation. In particular, we are interested at curvature features at
ridge-like regions. Experiments point that curvature value distribution may

For a given point p of the mesh, in world coordinates, the voxel v whose center is closer to
p is chosen. This can introduce a significant error in the estimation that depends on the
shape and the image.
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be more efficient that other features, like gray level profile, at these regions,
as showed in section 4.2.

Furthermore, ridge-like regions can be very reliably determined in meshes,
enabling the labeling of the models prior to the training stage. The adap-
tation algorithm could use specific features at the labeled points to improve
the segmentation. However, this results must be further investigated.

5.3 Establishing correspondence

An important challenge in the model building stage of MBS (and in image
processing in general) is establishing correspondence between shapes [Dav02].
Correspondence is needed in particular for building an statistical model from
a training set [CHTH94]. The training set consists on a set of images and
their associated ground truth segmentation.

Experiments show that ridge lines are located at corresponding regions
for different shapes. Figures 5.4 and 5.5 show how three different livers
present ridge lines at corresponding regions. The ridge lines where obtained
by simple thresholding of the maximal curvature value.

(a) Liver #1 (b) Liver #2 (c) Liver #3

Figure 5.4: Correspondence between ridge lines in three liver models

(a) Liver #1 (b) Liver #2 (c) Liver #3

Figure 5.5: Correspondence between ridge lines in three liver models (II)
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5.3.1 Initialization of the model by registration

The matching of curvature values presented in section 4.1 suggests the fea-
sibility for rigid alignment (rotation and translation) of the mesh with the
binary image. This alignment consists on the minimization of the following
expression:

min
T

∑
i

‖kMpi − o1(T (I(x, y, z)))|pi‖2 (5.1)

Where T is the rigid transformation we are looking for; kMpi is the curva-
ture of the vertex pi of the mesh; and o1(T (I(x, y, z)))|pi is the operator o1

applied to the transformed image and evaluated at point pi.
As curvature value is k = 1

radius
, we can also allow scaling in the registra-

tion introducing a 1
r

factor in the expression 5.1:

min
T,r

∑
i

‖kMpi −
1

r
× o1(T (I(x, y, z)))|pi‖2 (5.2)

This can be also used for model initialization on a gray scale image,
although accuracy of the method has to be determined.

Initialization is an important task in the MBS framework where the model
has to be positioned close to the object of interest. Otherwise, the adaptation
will be deviated and not captured by the object.

5.4 Further work

The use of curvature features in the MBS framework may involve:

� Establishing correspondence of the different meshes from the training
set.

� Labeling the ridge-like regions of the model.

� Determination of the initial model position by registration.

� Use of curvature features during the adaptation process.

The integration of curvature features into the MBS was out of the scope
of this work. The use of curvature shows large potential to improve MBS in
particular at ridge-like regions where MBS currently often fails.
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Appendix A

Elements of Differential
Geometry

This Appendix introduces some basic concepts in Differential Geometry. For
a more extensive reference, see for example [dC76].

Differential geometry is a branch of mathematics that uses the tools of
calculus and linear algebra to study geometry. In this document, we are
interested at the geometry of surfaces.

A.1 Curves in the space

Let α(t) be the parametrization of a curve. We would like to express the
curve at any point in terms of a basis of <3. At each point, we can build the
orthonormal vectors ~T (t), ~N(t) and ~B(t). ~T is the tangent to the curve. ~N

is the normal to the curve. ~B, called the binormal, is perpendicular to the
other two.

We will see that the derivatives of these vectors can be expressed as linear
functions of the curvature, k, and the torsion, τ .

Let α(t) be the parametrization of a curve of unit speed. In that case,

the tangent vector at a point t0 is ~T = ∂α
∂t

and
∥∥∥~T∥∥∥ = 1. Then we define the

curvature of α(t) as:

k(t) =
∥∥∥~T ′(t)∥∥∥ (A.1)
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The unit normal vector is defined as:

~N(t) =
~T ′(t)

k(t)
(A.2)

And the binormal:
~B(t) = ~T (t)× ~N(t) (A.3)

And we can define the torsion, which measures the extent to which the
curve is twisting out of the plane in which it lies, as:

τ(s) = −
〈
~B′(t), ~N(t)

〉
(A.4)

Together, the quantities ~T , ~N, ~B, k, τ are collectively called the Frenet-
Serret Apparatus. The relationship between them is expressed in the Frenet-
Serret Theorem:

~T ′ = k(t) ~N(t)
~N ′ = −k(t)~T (t) +τ(t) ~B(t)
~B′ = −τ(t) ~N(t)

(A.5)

These expressions allow the computation of the curvature and the torsion
at any point. A more practical way to compute curvature is to use the
Fundamental Forms, as described in the following section.

A.2 Surfaces in the space

The curvature of a surface may be studied through the variation of the vector
normal to that surface at each point. For this, we define the Fundamental
Forms:

1. The First Fundamental Form contains the intrinsic properties of a sur-
face, and it is defined by the inner product on the tangent space of
a surface in three-dimensional space. Let t1

s and t2
s be two tangent

vectors at the point s ∈ S:

I(t1
s, t

2
s) =< t1

s, t
2
s > (A.6)

And if we use this operator with dp = (pu,pv):

I(dp, dp) = dp2 = Ep2
u + 2Fpupv +Gp2

v (A.7)
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This can be written in matrix form, for any two tangent vectors as:

I(t1
s, t

2
s) = (t1

s)
T

[
E F
F G

]
t2
s (A.8)

2. The Second Fundamental Form is a quadratic form on the tangent
plane of a surface in the three dimensional space, and it is defined by:

II(t1
s, t

2
s) = − < ∇t1s

N, t2
s >=< N,∇t1s

t2
s > (A.9)

Where ∇t1s
N is the derivative of the normal vector in the direction of

t1
s. Again, if we use this operator with dp = (pu,pv):

II(dp, dp) = ep2
u + 2fpupv + gp2

v (A.10)

This can be written in matrix form, for any two tangent vectors as:

II(t1
s, t

2
s) = (t1

s)
T

[
e f
f g

]
t2
s (A.11)

A.3 Curvatures

In a point of a surface, the curvature is defined with it corresponding di-
rection; as there are infinite possible directions in the tangent plane, there
are infinite curvature values at a single point. Then, we define the following
curvatures:

� Principal curvatures, k1 and k2, and the associated principal directions
~k1 and ~k2. These are the maximal and minimal curvatures and their
directions.

� Mean curvature, H, is the average of all the curvatures at one point.
H = k1+k2

2
.

� Gaussian curvature, K, defined as K = k1k2.

For more details in how to compute these curvatures from the fundamen-
tal forms, see next section.
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A.4 Weingarten matrix

The curvature of a surface may be studied through the variation of the vector
normal to that surface at each point. The derivative of the normal vector
in the direction of the vectors tangent to the surface at each point is called
the Weingarten Map. Let p(u, v) : <2 → <3 be a parametrization of the
surface S. For computing this Weingarten Map, we use the First and Second
Fundamental Forms.

Then, the normal curvature in a tangent direction ~τ (i.e. the curvature
of the section of the surface by a plane containing the normal vector and the
vector ~τ) is:

kn(~τ) = II(~τ , ~τ) (A.12)

And in the case when ~τ is not a unit vector (general case),

kn(~τ) =
II(~τ , ~τ)

I(~τ , ~τ)
(A.13)

Which, in matrix form, and for the tangent vector dp, yields:

kn(~τ) =

[
pu
pv

]T [
E F
F G

]−1 [
e f
f g

] [
pu
pv

]
=

[
pu
pv

]T
1

EG−F 2

[
eG− fF fG− gF
fE − eF gE − fF

] [
pu
pv

]
=

[
pu
pv

]T
W

[
pu
pv

] (A.14)

Where W is the Weingarten matrix. The eigenvalues of this matrix are
the principal curvatures, and the associated eigenvectors are the principal
directions.
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Appendix B

Distance metric when using
vectors

We describe in this section a metric establishing a distance definition between
two vectors. The distance is defined in such a way that two vectors are more
similar the smaller the distance between them is.

A vector is characterized by a direction and an orientation. We are not
interested at the length of the vectors so we assue that vectors are normalized.

Distance d(a, b) is a measure of how close or how far two elements a and
b, a, b ∈ G are according to some metric definition. In this work, a, b ∈
`(~i,~j, veck), where `(bi) is the vector space generated by the basis bi, and
~i,~j,~k is the canonical base of R3.

For mathematical consistency, the distance definition has to assure that:

1. d(x, y) > 0 (non-negativity).

2. d(x, y) = 0 if and only if x = y (identity of indiscernibles).

3. d(x, y) = d(y, x) (symmetry).

4. d(x, z) 0 d(x, y) + d(y, z) (triangle inequality).

Then we propose two definitions for distance between normal vectors:

d1(~a,~b) =
1− 〈~a,~b〉

2
=

1− cos(θ~a,~b)

2
(B.1)

d2(~a,~b) = 1− ‖〈~a,~b〉‖2 = 1− cos2(θ~a,~b) = sin2(θ~a,~b) (B.2)
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Where θ~a,~b is the angle between both vectors. Note tht we alway consider
the smallest angle between both. Both definitions verify the 4 conditions.

First definition d1 takes into account direction and orientation, while d2

ignores orientation given the direction. In practice, we usethis metric to
compute distance between a principal curvature direction computed from
the image and a principal curvature direction computed from the image. In
that case, we want to ignore orientation (which may depend on the method
used to compute eigenvectors of the Weingarten matrix1). Therefore, we use
the second definition.

A different metric, which does not verify the conditions of distance, is
used in [ZGX05] for registration based in vectors information.

1For example, the eigenvectors may be computed: in a several step process which begins
with a Hessenberg decomposition, followed by a Schur decomposition, as done by GNU
Octave ( www.octave.org); or using the EISPACK routine RS, which in turn calls TRED2
to reduce A to tridiagonal form, followed by TQL2, to find the eigensystem decomposition
of the matrix, as done with the VNL library for C++ (vnl: Numerics Library) following
the method from Golub and van Loan [GvL96]. In some practical cases we found that
with both methods eigen values were identical but eigenvectors were in the same direction
but opposite orientation.
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Appendix C

Computation of local
coordinate system

We need to compute a local coordinate system where one axis is aligned with
the gradient (vector orthogonal to the surface) and the other two define the
tangent plan at a voxel. Given the normal vector g = (gx, gy, gz), then one
normal vector v in the tangent plane π ≡ gxx+ gyy + gzz = 0 verifies:

gxvx + gyvy = 0

v2
x + v2

y = 1
(C.1)

Where we did vz = 0 because we have one degree of freedom. That yields:

vx =
gy√
g2
x + g2

y

vy =
−gx√
g2
x + g2

y

(C.2)

If gx and gy are simultaneously zero (i.e. the gradient is (0, 0, gz)), then
a vector in the tangent plan is simply any normal vector where vz = 0, for
example v = ( 1√

2
, 1√

2
, 0).

Finally, the third vector of our basis, ~w, is a vector orthogonal to ~g and
~v, this is, ~w = ~g × ~v.
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Appendix D

Visualization tools

Despite the several visualization applications available at the beginning of
this work, some visualization functionalities were still missing. Along this
proyect, several visualization tools have been developped as they were needed.

These visualization tools have been developped in C++, making use of
the Insight Toolkit (ITK1), the Visualization Toolkit (VTK2) and the Prima
library from Philips Research.

The code developped is built as a C++ library, and the aim is to make it
usable from other modules in a way as easy way as possible. In the following
sections, we describe the different modules available in the library.

The imput data format is *.vtk for meshes and *.ics (Philips private
format) for 3D images.

D.1 SimpleVisualizer

SimpleVisualizer provides basic visualization capabilities for displaying tri-
angular meshes and 3D images. It consists in a set of methods that can add
objects to a visualization window. The objects that can be added are:

� Meshes. In VTK file or as a Model object (Philips specific data type).
A scalar field may be specified for vertex coloring (figure D.1(a)).

� Volumes. In BVolume format (Philips specific data type). Minimal and
maximal intensity values may be specified for only displaying a range of

1www.itk.org
2www.vtk.org
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intensity. The rendering technique used is a ray cast rendering (figure
D.1(a)).

� Vectors. A set of vectors and the points where they are placed required.
Instead of a list of points, the user can also specify a mesh ant its vertex
are taken as the points where vectors are located (figure D.1(c)).

And they can be displayed independently or in the same window.

(a) Mesh plot, colored with curvature val-
ues.

(b) Volume plot.

(c) Normal and principal vectors on the mesh surface.

Figure D.1: SimpleVisualizer graphical interface.

72



D.2 ThresholdVisualizer

ThresholdVisualier consist on two classes (one for meshes and one for vol-
umes) that provide interactive thresholding in the viewer.

For meshes (figure D.2(a)), a scalar field is used to associate a value with
each vertex (e.g. curvature value). Then the user can select the range that
will be displayed, and change it dinamically. This allows selection of vertex of
high value only, low value only, etc. The thresholding is done by moving the
mouse over the image. It is also posible to switch between the thresholding
mode and the normal mode, where the standard vtk interactor is activated
and the mouse events control the rotation, position, zoom, etc..

For images (figure D.2(b)), the scalar field is simply the gray level. The
curvature image can then be thresholded in the same way as for meshes, and
only the voxels where the gray level is in the threshold range are rendered.

(a) Threshold on a liver mesh. (b) Threshold on a binary liver im-
age.

Figure D.2: ThresholdVisualizer graphical interface.

D.3 SlicesVisualizer

This module provides methods for interactive visualization of three orthog-
onal slices of a volume. The user can translate the slices to any location
within the volume bounds with the mouse motion over the display. Each
slice is chosen by pressing one of the three mouse buttons.
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There is also a oblique slice mode, and mouse motion rotates the slice
instead of translating it. This provides oblique slices visualization. In the
current version of the module, only the axial view can be rotated.

The user can also associate a triangulated mesh to the display and vi-
sualize the mesh object together with the slices. This makes easier the un-
derstanding of curvature distribution on a certain plane with respect to the
object, as depicted in figure D.3.

Figure D.3: SlicesVisualizer interface

D.4 FeatureExplore

FeatureExplore (figure D.4) provides methods for exploring a certain image
feature along a feature line centered in a vertex of the model that is interac-
tively selected by the user. The interface consist in a main window, where
the user interacts, and a set of side windows.
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Figure D.4: FeatureExplore graphical interface.

The main display shows a triangulated mesh. The user can select a vertex
with the mouse. For the selected vertex, the main display show several
objects (figure D.5):

� The feature search line: a line in the direction of the vector normal to
the esh at the vertex.

� The feature slice: a slice of the volume along a plane that contains the
normal vector and the maximal curvature direction.

� The image curvature directions: represented with vectors, at each eval-
uation point of the feature search line.
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Figure D.5: FeatureExplore main window

The length of the feature search line and the sampling rate of it (i.e. the
distance between to points of the line where metric is evaluated) are specified
by the user.

The side windows display different metrics evaluated along the current
feature search line displayed in the main window. Example of available met-
rics are curvature value, principal directions distance (as defined in Appendix
B), gray level profile, gradient profile, etc.

The side windows present a number of features that can be easily modifies
in the code. The default layout is shown in figure D.6.
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Figure D.6: FeatureExplore side windows
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Appendix E

Full profile data experiments

In this Appendix, different features are explored along a profile line. They are
evaluated at three corresponding points of three different livers (c.f. section
4.2.3).

E.1 Component-by-component profile

The graphs in this section show the for maximal curvature direction profile,
comparing component-by-component the vectors at corresponding points of
three different livers.
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(a) x component of max-
imal curvature direction

(b) y component of max-
imal curvature direction

(c) z component of max-
imal curvature direction

Figure E.1: Curvature direction profile for point #1

(a) x component of max-
imal curvature direction

(b) y component of max-
imal curvature direction

(c) z component of max-
imal curvature direction

Figure E.2: Curvature direction profile for point #2
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(a) x component of max-
imal curvature direction

(b) y component of max-
imal curvature direction

(c) z component of max-
imal curvature direction

Figure E.3: Curvature direction profile for point #3

E.2 Vector distance profile

The graphs in this section show the profile of the distance (defined as in Ap-
pendix B, definition 2) of the maximal curvature direction for three different
livers at three different points.
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(a) vector distance pro-
file for point #1

(b) vector distance pro-
file for point #2

(c) vector distance profile
for point #3

Figure E.4: Curvature direction profile using vector distance metric
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Index

coordinate system, local, 69
curvature, 19

isophote, 23
maximal, 19
minimal, 19
sign, 31

Differential Geometry
continuous functions, 63
images, 22
meshes, 20

energy
external, 15
function, 13
internal, 15

extremality, 18

feature
function, 14

Hessian matrix, 26

isophote, 22

Model
Model Based Segmentation, 13

normal vector, 28

operator
o1, 27
o2, 27

profile
curvature direction, 54
curvature value, 47
gray value, 48

ridge
lines, 18
points, 32

smoothing
images, 29
meshes, 21

surface
model, 19

vector distance, 67
visualization tools, 71

Weingarten matrix, 20, 66
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